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Abstract—A hyper-heuristic is a heuristic optimisation method
which generates or selects heuristics (move operators) based on
a set of components while solving a computationally difficult
problem. Apprenticeship learning arises while observing the
behaviour of an expert in action. In this study, we use a multilayer
perceptron (MLP) as an apprenticeship learning algorithm to
improve upon the performance of a state-of-the-art selection
hyper-heuristic used as an expert, which was the winner of
a cross-domain heuristic search challenge (CHeSC 2011). We
collect data based on the relevant actions of the expert while
solving selected vehicle routing problem instances from CHeSC
2011. Then an MLP is trained using this data to build a selection
hyper-heuristic consisting of a number classifiers for heuristic
selection, parameter control and move acceptance. The generated
selection hyper-heuristic is tested on the unseen vehicle routing
problem instances. The empirical results indicate the success of
MLP-based hyper-heuristic achieving a better performance than
the expert and some previously proposed algorithms.

I. INTRODUCTION

The design and development of effective heuristic optimisa-
tion methods to real-world problems is often time-consuming
and becoming increasingly complex. Hence, there is a con-
siderable interest in automating the design of heuristic search
methods and obtaining more general approaches applicable
to various instances with different characteristics or multiple
domains [12], [22]. Hyper-heuristics have emerged as such
methods [16]. A hyper-heuristic is a high level search method
or a learning mechanism that selects or generates a set of low
level heuristics for solving hard computational problems. A
selection hyper-heuristic performs a single point based search
using a single active solution and fixed set of low level
heuristics. At each step, a heuristic is chosen and applied to a
solution and the resultant solution is considered to replace the
incumbent solution using a move acceptance method. In this
study, each low level heuristic is perturbative, processing and
returning a complete solution at all times. The hyper-heuristic
research has the potential of bringing together promising ideas
from the field of Machine Learning accumulated over the years
into heuristic optimisation [8]. A diagram of hyper-heuristic
framework in figure 1 illustrates the domain barrier between
hyper-heuristic and problem domain layer. Any problem do-
main specific knowledge is not allowed to pass through that
barrier. However, domain independent information, such as,

Fig. 1: Hyper-heuristics Conceptual Framework [9]

quality of a solution, number of heuristics available can be
accessed by a hyper-heuristic.

There are are different classifications for hyper-heuristics
based on different criteria [11], [13]. This study focuses
on an offline approach based on apprenticeship learning [1]
which generates a selection hyper-heuristic for solving a
vehicle routing problem [17]. Asta and Özcan [5] applied
apprenticeship learning using the VRP domain from a hyper-
heuristic benchmark implemented as a part of Hyper-heuristic
Flexible framework (HyFlex) [32]. They have used decision
trees, C4.5 as the machine learning approach. However, in this
study, we use a multilayer perceptron (MLP) and compare
its performance to C4.5 and some other previously proposed
approaches on the same problem domain. MLP learns from an
expert selection hyper-heuristic through training (observation)
how to perform heuristic selection, move acceptance and
set relevant parameters using a set of sample instances and
then mimics the behavior of the expert operating as a ‘new’
selection hyper-heuristic for solving unseen (test) instances.
The VRP literatures is extensive.

Section II provides an overview of related work, Multi-
layer Perceptron, Vehicle Routing Problem, and Cross-Domain
Heuristic Search Challenge (CHeSC), successively. Section
III describes the proposed approach. Section IV presents
the experimental results. Finally, section V summarises our



findings and points out potential research directions.

II. BACKGROUND

A. Related Work

The idea of automating the design of algorithm has been
explored from many perspectives since the initial work of
machine learning by Arthur Samuel in 1959 [31]. According
to [34], latest machine learning research can operate at a
higher level of generality than hyper-heuristic. Heuristic in
optimisation community is similar to classifier in machine
learning community. Since both areas share a common goal,
providing algorithms ability to generalise to new datasets, that
motivates to closer integration on these two fields.

Apprenticeship learning is mostly applied in the field of
robotics [1]. In a previous work [5], a machine learning
approach based on apprenticeship learning with the C4.5 clas-
sifier was implemented to build a generalised selection hyper-
heuristics. The approach was initially trained on small problem
instances in the VRP domain consisting of two representative
problem instance classes (Solomon and Gehring-Homberger
[40]). It was capable of generalizing the extracted knowledge
to unseen problem instances. The result outperforms the expert
which used Adaptive Dynamic Heuristics Set (ADHS) or
AdapHH strategy [30]. It is worth mentioning that it also
delivers outstanding performance compared to some other pre-
viously proposed selection hyper-heuristic in various occasions
on HyFlex VRP instances. This work encourages us to extend
the previous work in order to gain a better performance by
implementing a Multilayer Perceptron (MLP). Other work on
apprenticeship learning was implemented in Bin Packing can
be found in [7].

This study is also inspired from work in [4], which found
that between two classification algorithms of Waikato Envi-
ronment for Knowledge Analysis (Weka) interface, MLP is a
better algorithm compared with J48 (Java implementation of
C4.5 algorithm) in most of the cases from The University of
California Irvine (UCI) Machine Learning Repository. Weka
is a popular open source data mining and machine learning
platform implemented in Java [43]. Algorithms based on neu-
ral network have better learning capability if trained properly.
Besides, in this case it only requires a small training times.
However, as stated by No Free Lunch Theorem [44], there is
no such thing as the best learning algorithm. Decision tree on
the other hand is good at interpretability, while MLP is quite
robust with respect to noisy data.

Actually, function approximation with MLP have been
implemented by one of the contestants of the CHeSC 2011
competition [18]. MLP as learning agent became one com-
ponent on the algorithm proposed based on Reinforcement
Learning (RL). Since the results brought the fact that there is
no move acceptance criteria which means that it solely depend
on heuristic selection, in this study, move acceptance classifiers
are built in order to improve performance.

There are a number of related studies on machine learning
in hyper-heuristic. One work observed off-line learning hyper-
heuristic using Evolutionary Algorithms (EAs) in bin-packing

problems [38]. EAs is excellent for searching very large
spaces. Other work observed on-line learning evolutionary
hyper-heuristics which solves Dynamic VRP [20]. On-line
learning is good if there is lack of availability instances and
more suitable for dynamic problems.

B. Multilayer Perceptron

Multilayer Perceptron (MLP) is the most popular neural
network architecture, which utilises back-propagation on error-
correction learning rule, and process input by feeding it
forward from one layer to the next layer. There are three
layers in MLP consist of input, hidden, and output layer.
Artificial Neural Network (ANN) is able to predict with high
accuracy after it has been taught with historical data. MLP
have been applied successfully to solve many real world
applications. Some well knowns application areas are airline
marketing tactician, data compression, financial prediction,
hand-written character recognition, autonomous driving, ECG
noise filtering, protein secondary structure, psychiatric patient
length of stay, and speech recognition [36].

MLP pass the output of their layers through an activation
function. MLP usually use sigmoid (logistic) activation func-
tion in the feed forward. By far this is the most common form
of activation function.

Sigmoid (logistic) activation function is defined by [23] :

yj =
1

1 + exp(−vj)
(1)

Differentiability is the only requirement that an activation
function has to satisfy. This form is defined by :

yj =

{
0 for

∑n
j=1 wjxj ≤ threshold

1
1+exp(−vj)

for
∑n

j=1 wjxj > threshold
(2)

where vj is the weighted (wj) sum of all synaptic inputs
(xj) of neuron j, and yj is the output of the neuron.

Tuning the MLP topology design is a challenge itself
because the task is complex and commonly addressed by
simple trial and error procedures. There are no constraints on
the number of hidden layers, however it has been demonstrated
in [25] that an MLP with a single hidden layer can approximate
any bounded continuous function with arbitrarily small error.
Hence it is sensible to focus on one hidden layer and not
complicate the MLP structure unnecessarily.

Moreover, parameters tuning is needed to obtain an optimal
classifier. Four main parameters for learning MLP are number
of hidden nodes or neurons, learning rate, momentum, and
number of training time (iterations). First is in terms of
neurons number, because MLP is intended to do classification,
then it is often preferable to have one output neuron for each
group that input items are to be assigned into. The number
of output in MLP depends on the number of classes in the
dataset, while the input number depends on the attributes in
the dataset. There are many rule-of-thumb for determining the
right number of hidden neurons to provide a starting point.
One piece of guidance is from [24]. It states that there are



three rules for determining the correct number of neurons to
use in the hidden layer, namely the number should be between
the size of input and output layer, should be 2/3 the size of
input layer plus size of output layer, or should be less than
twice the size of input layer.

The second parameter to be considered is learning rate.
Too high a learning rate makes the perceptron periodically
oscillate around the solution. At this condition, most networks
do not converge or they converge to a poor solution and
become stuck. Learning rate value is mostly less than or
equal to 0.2 based on [2]. In addition, a typical ranges of
learning rate is [0.05 ≤ learning rate ≤ 0.75] [37]. However,
the common number of learning rate is 0.1 which is often
suggested according to [42].

Momentum as third parameter is a method to reduce prob-
lems of instability while increasing the rate of convergence. In
general, small learning rate values call for larger momentum
values to increase the speed and probability of convergence.
Large values of momentum will allow the algorithm to re-
member more terms in the adjustment history.

C. Vehicle Routing Problem

Vehicle Routing Problem (VRP) aims to design an optimal
distribution of delivery from a central depot to a number of
customers subject to constraints. The objective of VRP is to
minimize efforts such as route length, total driving costs or
driving time, while the common constraints include vehicle
capacity, vehicle type, number of cities, and precedence re-
lations between pairs of cities for delivering services to a
customer have to be satisfied [29]. Recent study in VRP for
example is in [45] who proposed a new Electric Vehicle (EVs)
route optimization model where green VRP is a relatively new
promising research topic in terms of energy saving. Besides,
various variants of VRP were observed in [35] by presenting
a general heuristic for all. Some previous work on the latest
advances of VRP can be found in [21].

In this study, Vehicle Routing HyFlex model is used which
include an extra variant, time window limit. Solution will
be valid if customer be served within this time range. The
objective function for VRP HyFlex domain is subject to
minimization for number of vehicles and travelled distance
[41]. Objective function can be defined as follows :

obj = c× v + d (3)

where v is number of vehicles, d is travelled distance, and
c, initially set to 1000, is level of importance to the number
of vehicles.

VRP instances that currently available in HyFlex framework
are taken from two sources, five instances from Solomon and
five from Gehring-Homberger. For both there are three types
of instances depend on customer’s location is determined, they
are Random (R), Clustered (C), or Clustered Random (RC).
Solomon and Gehring-Homberger have been utilized by many
researchers as benchmark datasets in VRP. Further details on
the list variant of instances can be seen in table I. Main

TABLE I: VRP instances in HyFlex [27]

Instance Name No.Vehicles Vehicle Capacity
0 Solomon/RC/RC207 25 1000
1 Solomon/R/R101 25 200
2 Solomon/RC/RC103 25 200
3 Solomon/R/R201 25 1000
4 Solomon/R/R106 25 200
5 Homberger/C/C1-10-1 250 200
6 Homberger/RC/RC2-10-1 250 1000
7 Homberger/R/R1-10-1 250 200
8 Homberger/C/C1-10-8 250 200
9 Homberger/RC/RC1-10-5 250 200

differentiation between instances are from number of vehicles
and their capacities.

There are ten low-level heuristics for the VRP domain
implemented within HyFlex, which are categorized as follows
[32].

1) Mutation (MU): modifies solution component
2) Ruin-Recreate (RR): partially destroys then repairs so-

lution
3) Hill Climbing (HC): conducts iterative moves in neigh-

bourhood to improve quality of solution
4) Crossover (XO): takes two candidate solutions and then

returns a new solution as offspring
The indices of the low level heuristics in HyFlex for HC are
{4,8,9}, MU are {0,1,7}, RR are {2,3} and XO are {5,6}. Hill
Climbing is used for intensification to perform local search in a
particular region, while mutation, ruin-recreate, and crossover
are used for diversification to explore other good regions
of the search space. Furthermore, there are two parameters
that control the low-level heuristics behaviour: Intensity of
Mutation (IoS) for mutation and ruin-recreate heuristics and
Depth of Search (DoS) for hill climbing.

D. Cross-Domain Heuristic Search Challenge

Because HyFlex is an easy to use platform in the form of
flexible Java class library, HyFlex v1.0 was used to support
the first Cross-Domain Heuristic Search Challenge (CHeSC
2011), which is a competition run and organised by Automated
Scheduling, Optimisation and Planning (ASAP) group at the
University of Nottingham, Nottingham, United Kingdom in
2011. The goal has been to promote development of effective
general search methodologies and get more insights into
different strategies in algorithm design [10]. CHeSC 2011
aimed at finding the state-of-the-art selection hyper-heuristic
which performs the best across six different problem domains.

The scoring system was based on median performance
inspired by Formula 1. The top eight algorithms receive 10,
8, 6, 5, 4, 3, 2 and 1 points respectively, while the remaining
algorithms receive no points. These points are added across
number of instances. Algorithm with highest points is the
winner.

CHeSC 2011 attracted 20 participants across the globe to
implement HyFlex as software interface. For testing, there
were six problem domains provided included two hidden
domains. Five instances from each domain that were selected



consist of three instances from training set provided and
another two were hidden. The hidden parts aimed to reach
generality of algorithm. Participants needed to benchmark their
machine with program provided to know the time limit they
can run their algorithm. This program corresponds to ten
minutes on computer using in competition. Moreover, scoring
based on typical 31 runs by reusing the random seeds so that
each algorithm and instance will start from the same initial
state.

PHUNTER [14] ranked the first on the VRP problem do-
main in CHeSC 2011. The proposed selection hyper-heuristic
is configured using an offline training session first via a
decision tree. The approach is based on an iterated local search
approach performing intensification and diversification when
needed. Adaptive Hyper-heuristic (AdapHH) was the winner
of CHeSC 2011 [30]. AdapHH outperformed its competitors
in three problem domain: MAX-SAT, BP, and TSP. It ranked
tenth in PS, second in FS, and fifth in VRP. AdapHH imple-
ments adaptive features to manage heuristic sets by adapting
heuristic parameters on-line. Based on performance metric
with quality indicators such as speed and improvement capa-
bility, it will decide which heuristic have to be excluded. It also
investigates relay hybridisation to determine effective pairs
of heuristics. For accepting mechanism, AdapHH implement
adaptive iteration limited list-based threshold by using fitness
values of previous best solutions.

III. PROPOSED APPROACH

Our approach is that the MLP algorithm constructs a
classifier for each dataset. This datasets were generated by
the training phase of Apprenticeship Learning (AL) based on
work in [5]. AL represents each state of search space by a
feature vector. Then after defined necessary actions, extracting
corresponding actions from expert algorithm was executed.
The extraction was for each state of the search that is inserted
into various datasets. The data were collected only if the expert
accepted the solution.

The expert was running on instance 0 from Solomon and
instance 5 from Gehring-Homberger. These two instances were
chosen arbitrarily to represent the generalization, because they
were taken from each class of VRP HyFlex domain. After
that, thirteen datasets were constructed, combined together
both instances. In each dataset, there are eight values of
delta as the attributes. Delta means the change in evaluation
function (fitness value) from current solution to candidate
solution in eight previous consecutive time. This number is
sufficient in AL. Datasets consist of one dataset for predicting
heuristic selection, one dataset for estimating Depth of Search
(DoS) parameter value, one dataset for estimating Intensity
of Mutation (IoM) parameter value, and another ten datasets
for each low-level heuristics move acceptance criteria. These
accepting criteria are :

1) Equal Accepted (EA) : accept candidate solution even
if it is the same with current solution

2) Worsening Accepted (WA) : accept candidate solution
even if it is worse than current solution

Improving solutions are always accept, however the policy
to deal with non-improving (equal or worsening) solution
is also critical in order to not get trapped in local optima.
Besides, the systems can only accept the heuristic index chosen
in previous step. Consequently, attention is given for both
heuristic selection and acceptance process.

First phase in this work is generating classifier for each
datasets using MLP. Since the procedure of finding a good
enough MLP model require trial and error, so that number of
training times was limited to 500 epochs. As stated in II-B,
there are parameters for MLP learning, consist of learning rate,
momentum, and number of hidden neurons. In this case, data
normalization is not necessary. This is because MLP classifier
can learn to apply appropriate scaling to the pattern attributes.
Meaning that any rescaling of input can be effectively undone
by changing the corresponding weights and biases. So that
apply data normalization or not will give the same outputs in
both way [39].

Cross-validation with folds number ten is used as test
options in doing the classification. This way will split the
whole data in equal sized subsets. It returns the averaged value
of the prediction scores of each subset obtained on the union
of all the other subsets [28]. Prediction scores for example in
form of an estimation of classifier’s error rate. This approach
does not waste too much data, which is a major advantage in
problem where the number of samples is very small.

Second phase is testing phase to apply the MLP classifiers
to unseen instances. The workflow of MLP learning hyper-
heuristics is illustrated in figure 2. There are five steps, namely
initialize solution, select heuristic based on MLP classifier,
set parameter (DoS or IoM) based on low level heuristic
chosen, apply heuristic, and accept heuristic that also based
on classifiers generated by MLP. The process will stop when
raise time limit which use benchmark time in CHeSC 2011.

Modifying low level heuristics can be done by the use
of Depth of Search (DoS) and Intensity of Mutation (IoM)
parameters. Initial value for both parameters in HyFlex is set
to 0.2 in the range [0,1], which generally relates to number
of improving steps. Changing the value will modify the
behaviour of low level heuristics. Each parameter’s meaning
depends on the heuristic. DoS only affects hill-climbing, while
IoM only affects mutation and ruin-recreate. Higher values
in DoS means that the hill-climbing heuristic searches more
neighbourhoods for improvement. Higher values in IoM means
that more variables are changed for mutation heuristic. For
example, IoM = 0.5 for ruin-recreate heuristic means that
a half of solution will be destroyed and rebuilt. Since the
outcome are real-valued, not discrete set, so regression is
implemented rather than classification in task of learning
process [15].

The two sided Wilcoxon signed-rank test is applied to
verified how close the best value performance between this
work or MLP-ALHH throughout the text, and previous work
or C4.5-ALHH throughout the text. The test is performed at 95
% confidence level. The test takes score differences in paired
and ranks them by absolute value in ascending order. The sign



Fig. 2: Workflow of MLP Learning Hyper-heuristics

(negative or positive) of each difference is given to its rank as
a label [26].

IV. EXPERIMENTAL RESULTS

We have applied the proposed approach on the VRP in-
stances implemented in HyFlex. The results are then compared
to those achieved in [5] and elsewhere. In order to maintain
fairness in our comparisons, we have used precisely the same
settings as in [5]. Our approach consists of a training phase
followed by testing. Instances 0 and 5 have been chosen
from Solomon and Gehring-Homberger datasets respectively
for training (refer to Table I). Similar to the study in [5], a
number of datasets are generated after the training process.
That is, one dataset is trained to model expert’s heuristic
selection strategy, two datasets to separately model the choice
of values for DoS and IoM parameters, and one dataset to
predict the acceptance strategy for each low level heuristic
available for VRP instances. After training, the generated
models are applied on all the instances (indexed from 0 to
9 in Table I) where 31 independent runs have been repeated
for each instance. Similar to the study in [5], the training
instances (indexed 0 and 5 in Table I) are also included
in the test phase. The inclusion of these instances play a
confirmatory role assessing the success of the trained model.
The experiments are performed on an Intel(R) Core(TM)i7
Windows 7 Enterprise (3.20 GHz) with 6 GB RAM. Each
trial terminates after 600 nominal seconds with respect to the
CHeSC 2011 machine.

Regarding the setting for the MLP, various configurations
have been considered and experimented for the heuristic
selection dataset. The best performing MLP model contains
one hidden layer with 20 hidden neurons operating with a
learning rate of 0.1, momentum of 0.1, and 500 iterations
for training. Following the training, it was observed that the
trained model has a 50.3 % accuracy. This value is worse than
the accuracy rate of 65.0 % obtained by the apprenticeship
learning approach using the C4.5 algorithm in [5]. This result
however is not that surprising, considering the previous work
by Amancio et al [3]. They have obtained an accuracy rate
of 50.9 % and 67.1 % with MLP and C4.5 respectively,

while classifying DB10F (artificial datasets modelling various
characteristics of real data) which data pattern is also not well-
localized. It is imperative to note that the accuracy of the
heuristic selection machine is not vital. Firstly, an accuracy of
50.3 % does not suggest that the heuristic selection machine
is choosing randomly among all heuristics. Instead, it merely
means that the heuristic selection mechanism is nearly random
and it chooses from five particular heuristics which are more
favoured by the expert algorithm (AdapHH) as projected to
the collected dataset. Here we ignore the cross-over heuristics
since they are not favoured by the expert. Secondly, it has
been observed in previous studies that it is only combined
with the acceptance mechanism that the heuristic selection
strategy influential on the overall performance of a hyper-
heuristic [33]. This will be further confirmed throughout
experiments where despite a seemingly low accuracy of the
heuristic selection machine, extra-ordinary results are achieved
for various instances.

Considering the heuristic acceptance datasets, and em-
phasizing that there are one such dataset per heuristic, the
following network configuration has been observed to perform
the best. The MLP model for heuristic index three is a network
with a single hidden layer of 5 neurons, learning rate of 0.3
and a momentum of 0.2. The configuration for heuristic index
six is one hidden layer of 20 neurons, learning rate of 0.1 and
momentum isequal to 0.1. As for the rest of the heuristics,
the expert (AdapHH) apparently has a fixed strategy of Equal
Accepted (EA) for heuristics 0, 1, 4, 8 and 9 and Worsening
Accepted (WA) for heuristics 2, 5 and 7. The prediction
accuracy of the two MLP models trained for heuristics three
and six are 80.0% and 93.5% respectively. The accuracy rate
achieved in [5] was 90.0%.

By using Linear Regression (LR) to predict the real values
of Depth of Search and Intensity of Mutation, value of 0.5824
is obtained with correlation coefficient 0.3. This correlation is
described as moderate. The LR also supports the MLP-ALHH
to improve the performance of hyper-heuristic.

The results of experiments is shown in table II. The per-
formances are measured by comparing average, minimum or
maximum value of the objective function. In majority of in-
stances (seven out of ten), MLP-ALHH manages to outperform
C4.5-ALHH in terms of average and median objective function
value. The MLP-ALHH outperforms its rival not only on
training instances, but also on unseen test instances. Even
though instance zero is a training instance, C4.5-ALHH has
lower average and median performance compared to MLP-
ALHH. However, there is no significant difference (statisti-
cally) between the two. This is an indication of generalization
capability of our approach, encouraging us to extend this work
to a cross-domain level in future.

A Two sided Wilcoxon signed-rank test is performed to
compare the performance of MLP-ALHH to C4.5-ALHH
(Table III). Z-value less than or equal to -1.96 or z-value
more than or equal to 1.96 indicates the rejection of the
null hypothesis, leading to the conclusion that there is no
significant difference between the results. The table shows that



TABLE III: Two Sided Wilcoxon Signed Rank Test on the
performance based on the objective values obtained by MLP-
ALHH and C4.5-ALHH over 31 trial for each VRP instance.
≥ (>) indicates that MLP-ALHH performs slightly (signifi-
cantly) better than C4.5-ALHH (within confidence interval of
95%), while ≤ (<) indicates vice versa

instance 0 1 2 3 4 MLP/C4.5
Solomon ≤ > > > > 4/1
z-value -1.94 -3.99 -4.50 -2.72 -2.23
instance 5 6 7 8 9 MLP/C4.5

Homberger > < < > > 3/2
z-value -3.03 -4.85 -4.52 -4.80 -4.58

MLP-ALHH performs significantly better than C4.5-ALHH
on all the instances except for instance six and seven. On
four out of five Solomon instances and three out of five
Gehring-Homberger instances, MLP-ALHH perform signifi-
cantly better than C4.5-ALHH. In order to provide a better
visual difference between two algorithms, box plot comparison
for all ten instances are provided in Figure 3.

On the majority of instances, the variance of MLP-ALHH
is notably less than the C4.5-ALHH approach. This indicates
that the MLP-ALHH method is more reliable in terms of
consistency as compared to the case when apprenticeship
learning uses decision trees. Interestingly, even though the
accuracy level in heuristic selection and acceptance is lower
than C4.5-ALHH, MLP-ALHH outperforms C4.5-ALHH in
generalising to the unseen VRP instances better. This could
be also an indicator that the data collected from a stochas-
tic online learning hyper-heuristic algorithm contains some
noise/imprecision even if the machine learning produces a high
accuracy rate while detecting a pattern.

When MLP-ALHH is compared to the participants of
CHeSC 2011, MLP-ALHH achieves the highest score of 29
out of the maximum score of 50, performing slightly better
than the winner in the VRP domain, PHUNTER [14] which
receives a Formula 1 score of 28 points. Table II shows that
MLP-ALHH produces a better performance achieving a better
median value on the instances five and nine.

MLP-ALHH is also compared to AdOr-ILS [41] which is
an adaptive Iterated Local Search hyper-heuristic incorporating
two components: adaptive operator selection and adaptive or-
dering of the local searcher heuristics. AdOr-ILS was reported
to have a superior performance based on twenty trials when
compared to another adaptive ILS variant and a non-adaptive
variant which randomly chooses a mutational and then local
search heuristic invoking them successively at each iteration.
The crossover operators are ignored by those approaches as
our approach. Table II shows that MLP-ALHH performs even
better than AdOr-ILS for 8 out of 10 instances on average.

V. CONCLUSION

This preliminary work illustrates that MLP based approach
is indeed capable of learning from the state-of-the-art ex-
pert hyper-heuristic and automatically generating classifiers
forming a well performing selection hyper-heuristic to solve

(a) instance 0 (b) instance 1

(c) instance 2 (d) instance 3

(e) instance 4 (f) instance 5

(g) instance 6 (h) instance 7

(i) instance 8 (j) instance 9

Fig. 3: Difference Between MLP-ALHH (V1) and C4.5-
ALHH (V2) in VRP HyFlex Domain



TABLE II: Performance comparison of MLP-ALHH to C4.5-ALHH and PHUNTER in VRP CHeSC 2011 instances. Comparing
MLP-ALHH to C4.5-ALHH, the bold entries represent algorithm which give better performance in average, the underline entries
correspond to algorithm which give better performance in median. Comparing MLP-ALHH to PHUNTER, the italic entries
refer to algorithm with better performance in median. The ’-’ entries means non-competition instances

Solomon Homberger
algorithm instance 0 1 2 3 4 5 6 7 8 9

MLP-ALHH mean 5168.7 20656.5 12461.4 5349.4 13903.1 145723.9 69772.0 163676.3 149366.7 145420.1
min 5161.9 20653.5 12311.8 5341.9 13296.5 145309.7 68185.1 162484.9 148815.9 144942.5

median 5161.9 20655.7 12333.0 5346.0 14270.3 145309.7 68185.1 162484.9 148815.9 144942.5
std.dev 16.9 3.3 348.7 12.2 554.6 1072.3 3863.7 3146.6 861.0 1033.0

C4.5-ALHH [5] mean 4954.6 20792.8 13266.7 5365.2 14113.8 147017.6 60101.9 161491.5 153132.2 147414.9
min 4178.8 20653.3 12300.2 5305.2 13277.0 144037.7 58352.6 160084.5 149227.1 145478.3

median 5156.4 20661.2 13365.5 5366.7 14294.0 146988.0 60163.0 161529.8 153000.2 147480.9
std.dev 394.2 340.9 310.9 29.4 481.3 1780.5 790.0 842.7 1663.2 956.8

PHUNTER [14] min - 20650.8 12263.0 - - 143663.9 61139.3 - - 146472.9
median - 20650.8 12290.0 - - 146944.4 64717.8 - - 148659.0

AdOr-ILS [41] mean 5281.7 21291.9 13605.0 6564.4 14280.8 155305.5 77302.7 163177.7 158941.9 149447.7
std.dev 334.6 482.6 451.6 554.8 319.5 6154.2 3384.8 2100.1 2460.7 1500.9

Fig. 4: Formula 1 scoring and ranking of MLP-ALHH, C4.5-
ALHH and other CHeSC 2011 competing hyper-heuristics.

a vehicle routing problem. The apprenticeship learning MLP
generalises and even improves the performance of the expert
to unseen instances. The empirical results show that the
generated selection hyper-heuristic performs better than some
other previously proposed approaches.

Learning from a hyper-heuristic optimisation algorithm op-
erating with limited information allowed through the domain
barrier is extremely challenging. Different machine learning
algorithms performs differently in hyper-heuristic generation.
There is already an indication that machine learning algorithms
would become even more useful in an information rich envi-
ronment where they have access to the problem domain [6].

This work encourages us for a further study. We will test
the performance of different machine learning algorithms,
particularly, Adaptive Network based Fuzzy Inference System
(ANFIS). Based on [19], ANFIS was able to achieve a
better generalization capability in prediction as compared to
MLP. Moreover, we will give the machine learning algorithm
access to the problem domain as well for improving heuristic
optimisation.
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